
Linux hardware inventory:
Current reality, future possibilities

Martin Schwenke
IBM OzLabs Linux Technology Center

<martins@au.ibm.com> · <martin@meltin.net>

Abstract

The lsvpd and lscfg commands are used on AIX r© systems to list interesting in-
formation about the hardware that makes up a system. These commands have been
partially reverse-engineered and reimplemented for Linux r© running on PowerPC r©.
The Linux versions have reached a point where they are likely to provide useful in-
formation for an IBM service engineer who is familiar with the AIX commands, but
comes across a pSeries r© machine that is running Linux.

The first part of this paper covers progress so far: the early days of the project - this
should take a few hours; a Perl prototype - Perl probably isn’t available early enough
it the boot sequence, so we’ll call it a prototype; more experiments in C and Bourne
shell - success at last; and packaging issues - would you like find with that?

The second part of this paper covers possible futures: including cross-architecture

hardware inventory and device-naming. Some of this involves changing the direction

of various parts of the project and looking at areas that are outside the scope of the

project.

1 Introduction

Linux distributions generally provide simple mechanisms for detecting what
hardware components are attached to a machine. For example, Red Hat uses
kudzu1 and SuSE uses hwinfo. These systems tend to provide a database that
persists across reboots, along with simple forms of change management. How-
ever, they don’t provide platform specific information that allows a hardware
engineer to easily locate particular components, or any detailed information
about components, such as Vital Product Data (VPD). The main focus of these
tools is convenience — ensuring that hardware is properly detected and is con-
figured as automatically as possible.

AIX has a large, mature hardware inventory system. The Object Data Man-
ager (ODM) is a store containing persistent information about hardware com-
ponents, including generic, static information that is installed along with device

1 http://rhlinux.redhat.com/kudzu/

1

2 2 Are we there yet?

drivers, as well as dynamic information about the current configuration of com-
ponents. While certain changes in hardware configuration are handled using
sensible defaults, more complex changes can be managed using the chdev and
diag commands. The lsvpd and lscfg commands allow information about
components to be retrieved. lsvpd lists VPD in a compact format that is suit-
able for both human browsing and parsing by higher-level system management
utilities. lscfg lists hardware configuration information in a human readable
format that can include VPD and platform-specific information. The main goal
of these tools is to improve serviceability, one of the components of RAS.2

This paper describes the history, progress and changing aims of the Linux
lsvpd project. The resulting software currently only works on modern IBM
pSeries (PowerPC-based) systems. The first section covers the period between
the project’s inception and the present. The second section speculates on the
project’s future.

[1] is an earlier paper describing the project from a different perspective, includ-
ing more background on its RAS goals.

2 Are we there yet?

The Linux lsvpd project has been through a number of distinct stages that are
summarised in this section.

2.1 This should take a few hours!

This project started in about May 2001 when Greg Rodgers, a long-term IBMer
associated with pSeries, but now working on Linux, pointed out that Linux on
pSeries needed an lsvpd command. He pointed out that the Open Firmware
(OF) device-tree, imported by the Linux PPC kernel into /proc/device-tree,
contained ‘properties’ called ibm,vpd. These files, containing binary data, sim-
ply needed to be converted to a textual format similar to that produced by the
AIX lsvpd command, as shown in Figure 1.

*DS 2 RIO-PCI COPPER

*SN YL1182206012

*PN 53P3820

*CC 2887

*FN 53P3800

*VK RS6K

*YL U0.4-P1.1

Fig. 1: An example of VPD

2 Reliability, Availability and Serviceability.

2.2 Snazzy SCSI solutions 3

The important fields shown in Figure 1 are described as follows:

DS: Description. Usually displayed as the first item.

SN: Serial Number. It is useful to confirm the serial number of a component
before removing it, when possible.

PN: Part Number. Knowing the history of a part may help to explain certain
types of faults.

FN: FRU (Field Replaceable Unit) number. This is a generalisation of a model
number, representing a family of models that are interchangeable. For ex-
ample, an old model may no longer be available, but there may be a newer
model with the same FRU number that can be used as a replacement.

YL: Physical Location. All fields beginning with ‘Y’ are system specific fields
and, in this case, this field is particular to IBM pSeries systems. This
example can be read (from right-to-left) as extender 1, on planar (or back-
plane) 1, in drawer 4, in rack 0.

This task began as a simple reverse engineering, parsing and pretty printing job,
and proceeded fairly quickly. A single Perl script seemed the perfect tool for
the job and there wasn’t even a need to understand the VPD contained in the
files. To make things even easier, it was soon ‘discovered’ that the data in the
ibm,vpd files wasn’t in a weird proprietary format, but was in a format detailed
in the PCI specification [2]. The job was all-but complete.

As usual, with any reverse engineering job, things weren’t quite that simple.
Greg compared our script’s output with that from a machine running AIX and
noticed that ‘things like SCSI disks’ were missing. Some e-mail to and from
members of the AIX lsvpd team confirmed that it was to be a much bigger job:
the OF device-tree doesn’t contain VPD for everything, especially things like
SCSI devices - these things need to be ‘probed’ separately and the VPD needs
to synthesised from available information.

2.2 Snazzy SCSI solutions

SCSI devices seemed to be the most useful class of components that were missing
VPD. Therefore, we decided to augment the device-tree with VPD files for
SCSI devices, primarily as a ‘proof of concept’. An important decision was
made to avoid trying to update /proc/device-tree - that would involve kernel
modifications, and this was something the kernel didn’t need to know about.
Therefore, the device-tree was copied to /var/lib/device-tree, so any extra
VPD could be added there. Change management would be considered later.

Some experimentation with SCSI Inquiries, using the sg inq from the sg3 utils3

package, and comparing the output with that of the AIX lsvpd command, sug-
gested the use of templates. The first 32 bytes of the ‘Standard Inquiry’ output
are standard, with higher bytes depending on the model of a device. Extended
VPD (EVPD) pages are also available, depending on the model. Luckily, much
of the non-standard information is almost identical across all disks certified for

3 http://www.torque.net/sg/

4 2 Are we there yet?

use in pSeries machines, so less than a dozen templates were needed, with most
of these sharing common fields.

Figure 2 shows the output from a SCSI Standard Inquiry and Figure 3 shows
the corresponding VPD.

00000000 00 00 03 02 9f 00 01 3a 49 42 4d 20 20 20 20 20 |.......:IBM |

00000010 49 43 33 35 4c 30 33 36 55 43 44 32 31 30 2d 30 |IC35L036UCD210-0|

00000020 53 35 42 53 56 4d 46 39 39 33 31 38 30 37 4e 34 |S5BSVMF9931807N4|

00000030 39 30 38 20 20 20 20 20 0c 00 00 00 00 00 00 00 |908|

00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

*

00000060 20 20 30 30 37 35 30 32 31 37 32 00 30 30 30 31 | 007502172.0001|

00000070 32 32 30 39 50 33 39 32 33 20 20 20 20 20 48 33 |2209P3923 H3|

00000080 32 30 35 31 20 20 20 20 30 37 4e 37 30 37 30 20 |2051 07N7070 |

00000090 20 20 20 20 46 38 30 34 37 30 20 20 20 20 32 30 | F80470 20|

000000a0 30 32 00 00 |02..|

000000a4

Fig. 2: Hexadecimal dump of SCSI Standard Inquiry output

*DS 16 Bit LVD SCSI Disk Drive

*AX /dev/sda

*MF IBM

*TM IC35L036UCD210-0

*YL U0.4-P1-I1/Z2-A8

*FN 09P3923

*RL 53354253

*SN VMF99318

*EC H32051

*PN 07N7070

*Z0 000003029F00013A

*Z1 07N4908

*Z2 0075

*Z3 02172

*Z4 0001

*Z5 22

*Z6 F80470

*Z7 500507620CC4AC8E

Fig. 3: VPD for a SCSI disk

Interesting fields in this VPD, include:

AX: Logical name (or AIX name). This allows system diagnostics (for example,
kernel log messages) to be associated with physical components. In this
particular case, the VPD is generated on Linux, so the device-name is for
the first (logical) SCSI disk.

YL: Physical Location: SCSI target 8, on integrated SCSI bus 2, on I/O adapter
1, on planar (or backplane) 1, in drawer 4, in rack 0.

RL: Firmware level. Problems may relate to faulty firmware, so a firmware
upgrade may be the most useful fix. In this particular case, it has been
hex-encoded, so is S5BS.

2.3 Perls of wisdom. . . 5

MF: Manufacturer.

TM: Type/model.

EC: Engineering change level of the board.

Z0: All fields starting with ‘Z’ are device specific. In this case, Z0 is first 8 bytes
of the standard SCSI Inquiry result, hex-encoded. This provides lots of
useful information about the device, like the type of SCSI device (disk,
CD-ROM, tape, enclosure, . . .), number of address and data bits, . . .

Z7: Worldwide ID (WWID) of the disk. AIX lsvpd doesn’t show this informa-
tion, but it is useful for persistent device naming, so has been included in
the Linux version.

2.3 Perls of wisdom. . .

The single Perl script was split into two scripts: update-device-tree, used
to copy the /proc/device-tree and add linux,vpd files for the SCSI devices,
and lsvpd, which printed a header and rendered the ibm,vpd and linux,vpd
files. When complete, the core parts of the package contained about 2000 lines
of Perl code. Most of the actual code was in Perl library modules. Interesting
aspects of the implementation include:

• The Perl unpack function proved very useful for parsing binary data, in-
cluding PCI VPD chunks.

• SCSI Inquiries were initially done by running the external sg inq com-
mand and parsing the hexadecimal output.

• SCSI Inquiries were reimplemented using Perl’s ioctl function. The pack
function was used to construct arguments to ioctl and output was parsed
using unpack. Formats for unpack were constructed from fairly verbose
templates, represented using Perl hashes that were stored in configuration
files.

• Determining the physical location (YL field) for a SCSI device involved
matching a logical device, such as /dev/sda, with the corresponding node
in the OF device-tree for the ‘physical’ SCSI host adapter. Theoretically,
the best way of doing this involves matching PCI bus, device and func-
tion data for the adapter. The implementation involved (at least) two
problems:

– While it is easy to determine the SCSI host adapter associated with
a device, it is more difficult to get the PCI data for the adapter. The
only universal method under Linux 2.4 is to parse the host adapter
information files, such as /proc/scsi/sym53c8xx/0. However, the
format of these files is driver specific, so more templates were needed.

– Many of the 64-bit pSeries machines can have more than 256 PCI
buses, even though the Linux kernel usually stores the bus number as
an unsigned char (an 8-bit quantity). These machines are referred
to as ‘bignum machines’. The Linux 2.4 PPC64 kernel is hacked so
that PCI bus numbers are stored variously as either unsigned char,

6 2 Are we there yet?

int or unsigned int. This inconsistency, and a lack of any infor-
mation in the OF device-tree about buses with numbers greater than
8-bits, meant that the matching was not possible. Two kernel patches
were required:

∗ A linux,global-number property (later called linux,phbnum)
was added to the OF device-tree node for each PCI host bus.
The kernel uses these numbers as the top 24 bits of PCI bus
numbers.

∗ The sym53c8xx SCSI driver, used almost exclusively in the rele-
vant machines, was patched so the host adapter information files
would always contain a 32-bit quantity (via an unsigned int).

In about June 2002, it was realised that the lsvpd package might be required in
single-user mode, to aid fault diagnosis, and very early in the boot sequence,
so various pieces of information could be used as inputs to persistent device
naming. Since Perl resides on the /usr filesystem, and only a root filesystem
might be available, Perl was considered unsuitable for ongoing development.
Therefore, development on the Perl version ceased and the Perl version was
retrospectively considered a prototype.

Several lessons were learned from the Perl prototype, including:

• A scripting language was appropriate for a large part of the project, since
there was a lot of fairly simple string handling and file input and output.

• The templates used to parse SCSI Inquiry data were too verbose and
difficult to manage.

• The approach of using an augmented copy of the device-tree as a database
seemed to work, as did the split in functionality between lsvpd and
update-device-tree.

2.4 C and shell (by the seashore?)

A decision was made to continue using a scripting language as much as possible,
and to write helper commands in a compiled language for specific purposes that
couldn’t be satisfied using the scripting language and the available external
commands. The only scripting language that is generally available in Linux,
especially without a /usr filesystem, is a Bourne-compatible shell. Since bash
is used on most Linux systems, and provides built-in support for things like
arithmetic, it was chosen as the scripting language.

The next choice to be made was that of the compiled language. While C++
provides a nice selection of classes that might make life easier, it also tends to
produce rather large executables, which may not be appropriate for an early-
boot environment. Therefore, C was chosen as the language for writing helper
commands. In an effort to avoid the ‘not invented here syndrome’ to some
extent, the glib-2.0 utility library was selected for use.

2.4 C and shell (by the seashore?) 7

2.4.1 Updating update-device-tree

One change in approach centred on the fact that update-device-tree would
be run relatively rarely, while lsvpd would be run quite often, with a real person
waiting for output. This suggested that lsvpd should be as fast and simple as
possible - it should simply find linux,vpd files and print their contents. The
rendering of ibm,vpd files would be done by update-device-tree.

One important issue would be guaranteeing availability of all commands used on
the root filesystem. Although sed appears in /bin, and would be indispensable
for simple parsing, commands such as find and sort, usually found in /usr/bin
were also required. Therefore, a dependency on busybox4 was added, since it
could provide the subset of functionality of these commands that was being
used.

2.4.2 Rendering ibm,vpd

The first task attempted was to write a C program to render PCI VPD. More
particularly, the ibm,vpd files can contain several PCI VPD chunks, each pre-
ceded by a four byte length (in network order). This resulted in two modules:

pci vpd to text.[ch]: Takes a standard PCI VPD chunk and renders it as a
text string.

ibm vpd render.c: Reads an ibm,vpd file, extracts the individual VPD chunks,
hands each of them to pci vpd to text() for parsing, and combines the
results, inserting a delimiter before the output for each chunk.

Later, most of the functionality of the latter module was separated into a new
module called ibm vpd to txt.[ch] and temporarily used by another module
until ‘a better way’ was found.

2.4.3 Rendering SCSI VPD

The next task was to implement production of SCSI VPD. This involved rein-
troducing the use of sg inq, since it was already the most appropriate ‘helper
utility’ for retrieving SCSI Inquiry data. A small patch to sg inq that added
a -r option to produce raw, binary output, instead of formatted hexadecimal
text, was accepted into sg3 utils 1.01.

Several stages were used to produce the SCSI VPD:

scsi vpd scan: A script that lists all available SG devices and iterates over
them using scsi vpd inquire.

scsi vpd inquire: A script that takes a generic SCSI device and an output
directory, and dumps all available Inquiry data for the device into that
directory.

scsi vpd std: A C helper that extracts useful information found in the first 32
bytes of the Standard Inquiry, and produces a file for each available field.

4 http://busybox.lineo.com/

8 2 Are we there yet?

scsi vpd custom: A C helper that uses templates to extract other fields from
the rest of the Standard Inquiry and other available Inquiry data. An ex-
ample template is shown in Figure 4. The ‘*’ matches any model number.
The Standard Inquiry is parsed, from byte 32 onwards, yielding the RL
field (4 bytes), SN (8 bytes), Z1 (12 bytes), skipped data (42 bytes), Z2
(4 bytes), and so on. Page 0x83 of EVPD has the first 8 bytes skipped,
before the next 8 bytes are extracted into the Z7 field. The templates are
very compact and easy to parse, as well as being effective. Due to the
wild-carding facility, only five templates are currently needed.

Field generation: The YL and AX fields are generated by update-device-tree.

scsi vpd render: A script that collects together the individual fields produced
by the previous three stages, and prints them in a consistent order.

IBM;disk;*;

inquiry=RL:4,SN:8,Z1:12,_:42,Z2:4,Z3:5,_:1,Z4:4,Z5:2,FN:12,EC:10,PN:12,Z6:10,_:4;

0x83=_:8,Z7:8

Fig. 4: Template for most IBM SCSI disks5

2.5 Enter lscfg

In August 2002, Todd Inglett, an IBMer working on related utilities, contributed
a version of lscfg that simply ran lsvpd and pretty printed the output. Figure 5
shows some output for a SCSI disk, from the current Linux version of lscfg.

sda U0.4-P1-I1/Z2-A8 16 Bit LVD SCSI Disk Drive (36400 MB)

Manufacturer................IBM

Machine Type and Model......IC35L036UCD210-0

Device Specific.(YL)........U0.4-P1-I1/Z2-A8

FRU Number..................09P3923

ROS Level and ID............53354253

Serial Number...............VMF99318

EC Level....................H32051

Part Number.................07N7070

Device Specific.(Z0)........000003029F00013A

Device Specific.(Z1)........07N4908

Device Specific.(Z2)........0075

Device Specific.(Z3)........02172

Device Specific.(Z4)........0001

Device Specific.(Z5)........22

Device Specific.(Z6)........F80470

Device Specific.(Z7)........500507620CC4AC8E

Fig. 5: lscfg output for SCSI disk

5 Templates are actually single-line, but this one has been split for presentation purposes.

2.6 Cross platforms? 9

2.6 Cross platforms?

At this stage it looked like it might be time for the project to move from just
pSeries, to working on any Linux architecture. This would mean breaking some
ties with the OF device-tree, and implementing helper programs to retrieve
VPD directly from PCI adapters, rather than relying on the device-tree to
conveniently dish them up. Two such helpers were (partially) implemented:

pci vpd cap grab: This utility successfully extracts PCI 2.2 style VPD via
the capabilities list in an adapter’s PCI configuration space, producing
ibm,vpd-style output. This form of output was chosen, rather than a sin-
gle VPD chunk, because the PCI 2.2 specification is a little unclear about
whether an adapter can contain multiple VPD capability items.

pci vpd rom grab: This utility attempts to extract PCI 2.0/2.1 style VPD from
a PCI expansion ROM, but usually succeeds in locking up a machine! It
seems certain that kernel support will be needed to access the ROMs - the
most useful idea would be to have sysfs6 optionally contain binary blobs
containing data from any PCI expansion ROMs. This has not yet been
implemented.

Without the above basic functionality, making lsvpd work across architectures
is not a reachable goal.

2.7 Testing times

In February 2003, IBM hardware test laboratories in Austin wanted to test new
pSeries hardware configurations, running Linux. They also wanted a usable
version of lscfg to assist with the testing, and they wanted that version to be
available as part of the Linux distributions most likely to run on the hardware.
They wanted to complete most of their testing by the end of March. This would
be the first time the lsvpd package would be ‘used in anger’. At this time lscfg
was a pretty printer and was missing most of the functionality of its AIX role
model.

During and since this time, most of update-device-tree and lscfg have been
incrementally rewritten. Many additions to lscfg involved directly rendering
parts of the device-tree - rather than re-rendering lsvpd output, lscfg became
more closely tied to the device-tree. So much for going cross-architecture!

Early on, it was noticed that the patch for the sym53c8xx SCSI driver hadn’t
been merged, and it wasn’t likely that this would happen very quickly. The
template scheme was augmented with information about IRQs, and they were
incorporated to provide more reliable matching of SCSI host adapters. It was
ugly, but good enough. There was still no consistent and reliable way of finding
the PCI information for Ethernet adapters, so interface numbers were simply
allocated sequentially starting at 500, to avoid any confusion caused by their
names accidently matching those assigned by the operating system.

6 sysfs is a Linux-specific device-tree implemented in Linux ≥ 2.5, allowing drivers to export
information in a uniform way.

10 3 Where to now?

The first usable version (0.8.4) was publicly released as part of the Source-
Forge.net linux-diag project7 in May 2003. Since then progress has continued.

scsi vpd scan has been obsoleted. Its functionality has been replaced by
two new functions internal to update-device-tree: scsi list devices and
scsi do device. The idea is that devices might be listed at boot time, but in
Linux ≥ 2.5, with usable hotplug, devices will often need to be processed sepa-
rately, so functions like scsi do device can be separated into a library and used
by multiple scripts. A quick browse of scsi vpd inquire and scsi vpd render
show that they can be simplified and replaced by similar, smaller library func-
tions, instead of being stand-alone scripts.

Support for using sysfs to determine PCI information for adapters has been
added. This works for all adapters, not just SCSI, and doesn’t require tem-
plates, since the required information is explicit in the structure of sysfs. When
available, sysfs is also used to efficiently list various types of adapters.

Support for PCI domains8 has also been added in Linux 2.5, so issues relating
to bignum machines have been solved there. update-device-tree has been
updated to support PCI domains for matching PCI adapters. The old script
for determining SCSI adapter PCI information has had PCI domain support
retro-fitted, even though it is now used only when sysfs is unavailable.

2.8 Baggage claims

Packaging lsvpd has been an interesting exercise. As mentioned above there are
dependencies on sg3 utils and busybox (for sort and find). Currently SuSE
Linux rolls sg3 utils into their scsi package, and all of the programs live on the
/usr filesystem. Also, SuSE’s current SLES release doesn’t include busybox.
The idea of including extra commands in a future release, and moving others,
has been discussed with SuSE representatives.

2.9 Summary

The package currently contains about 1500 lines of bash script and 1500 lines of
ANSI C source. Keeping it this small has involved constant tweaking and refac-
toring, resulting in code that is more maintainable and usually more efficient.

3 Where to now?

This section discusses directions that lsvpd needs to go in. . . and directions that
simply seem worth considering. . .

7 http://sourceforge.net/projects/linux-diag/
8 PCI domains are groups of PCI buses, identified by what used to be the top bits of the

bus numbers.

3.1 Cross platforms? 11

3.1 Cross platforms?

Will lsvpd go cross-architecture? The various components need to be considered:

update-device-tree: This command has ‘device-tree’ in its name, so hardly
seems like a candidate for architectures with an OF device-tree! However,
there is no reason why much of the scanning code can’t be reused on archi-
tectures where components have to be probed directly (as is already done
for SCSI devices) or there is another mechanism for getting information
about components (such as ACPI).

Since much of the VPD in PCI adapters seems to be stored in expansion
ROMS, a workable replacement for pci vpd rom grab needs to be found,
probably using sysfs, as mentioned above. However, since expansion ROMs
can have non-trivial sizes, copying them into sysfs is probably not an option
for smaller embedded systems where memory is at a premium.9 One hopes
that memory size scales roughly linearly with the number of PCI adapters
on a system!

lsvpd: There is nothing here that particularly requires a device-tree — lsvpd’s
main job is to simply find all of the linux,vpd files in a ‘database’ and
print their contents.

lscfg: Many recent changes have made extensive use of the device-tree or have
focused on presenting platform specific information. At the moment a -p
option prints a separate platform-specific section, but the generic section
is still tied to the device-tree. Factoring can be done to more cleanly split
out the architecture-specific logic.

3.2 Persistence in device naming

Linux currently lacks persistent device-naming. In Linux 2.4, devfs is meant to
keep names reasonably persistent. In the case of SCSI devices, names are given
according to host, channel, device and LUN numbers. However, the numbers for
SCSI host adapters are still allocated in ‘probe order’ by the kernel, so removing
or adding adapters can have a major effect on the name of attached devices.

One part of ensuring devices are named in a persistent way is to use information
about the hardware. The hardware inventory kept by the lsvpd package is one
possible source of such information. VPD fields, or combinations thereof, could
be used as keys in a lookup table of device names. One possibility is to use
component identifiers, such as Z7 (WWID) for SCSI devices or (MF, TM, SN)
for other devices (and SCSI devices without a WWID). Another option is to
use slot identifiers, such as YL.

Making the whole hardware inventory database (the device-tree, in this in-
stance) available for device naming doesn’t seem necessary. It should be possible
to use a subset containing just the relevant information.

9 Such systems are unlikely to be very complex, or change very much, so the same RAS
issues aren’t applicable.

12 3 Where to now?

3.3 Coping with change

One task of a hardware inventory system is to manage changes that occur in the
hardware configuration. The most important changes relate to device naming:
when physical devices are changed, how does the operating system’s view of
them change. Implementing a change management system requires:

• a history mechanism;

• heuristics for handling different types of changes; and

• software utilities for handling cases where the heuristics don’t apply or
need to be manually overridden.

An example of where the choice of heuristics is very important is when two
adapters are swapped between two slots (physical locations) — should the
adapters retain their old names, since their individual identities (such as (MF,
TM, SN)) are unchanged, or should their names be swapped, since it may be
preferable to associate names with slots?

AIX currently uses the hardware inventory database to manage such changes,
as do Linux tools like kudzu. These need to be investigated.

Currently lsvpd maintains a change history by simply keeping all old augmented
device-trees, from previous runs of update-device-tree. The lsvpd and lscfg
commands can accept an alternative device-tree directory via a command-line
option. This history mechanism is too simplistic, but it is better than nothing.

3.4 Supporting large systems

Linux kernels, up to and including Linux 2.510, impose some fairly serious limits
on the number of devices that can be supported. For example, only enough
major numbers are allocated to cope with 128 SCSI disks. A more universal
limitation is imposed by the use of 8-bit device minor numbers, since many
device classes are only allocated a single major number. Also, tools such as
sg scan, which is used by scsi list devices to enumerate SCSI devices when
devfs is not available, are currently limited to a maximum of 128 devices.

On large systems these limits are unreasonable. One possible solution is for the
Linux kernel to adopt larger (32-bit?) device minor numbers but, since such
a change would be ubiquitous, it might be difficult to push through. Another
possibility is for device numbers to be simply allocated from the current 16-bit
major/minor space.

Also, on Linux 2.5, some drivers, such as the sg driver, still need to have sysfs
support added. This may provide a better way implementing scsi list devices
on systems with sysfs, but still requires the kernel to provide a mechanism for
dealing with more than 128 or 256 devices.

lsvpd is inherently able to cope with large systems, but the required infrastruc-
ture is not yet available.

10 At least those 2.5 kernels released at the time this paper was written.

3.5 Bolting on back-ends 13

3.5 Bolting on back-ends

In the long-term, a device-tree may not be the best format for a hardware
inventory database. This is especially true if the package is to be used on
architectures without an OF device-tree. Also, the current scheme is not in-
credibly efficient since lsvpd and lscfg search a reasonably deep directory tree
for linux,vpd files. Once created, the linux,vpd files could be stored in an
alternative structure for printing by lsvpd and re-rendering by lscfg. On IBM
pSeries machines, lscfg would still require an OF device-tree as a source of sup-
plementary and platform specific information. Similar requirements may exist
for other architectures.

Alternatives include:

• A possibly different directory structure for each architecture. This is pos-
sible by using different setup and rendering hooks according to the archi-
tecture.

• A sysfs-based solution. This could be either an augmented sysfs device-
tree, or a completely different structure with links into the sysfs device-
tree.

• Using an existing hardware inventory database, such as that used by
kudzu.

• Using a Common-Information-Model (CIM) Object Manager (or CIMOM).
The CIM Core Schema11 contains objects such as PhysicalElement and
LogicalDevice. It is unclear whether this schema would be rich enough to
accommodate all of the information currently handled by the lsvpd pack-
age. CIMOMs also seem to have quite a large footprint.

4 Conclusions

The Linux lsvpd project has progressed from being a quick hack to a reasonably
mature serviceability package for Linux running on IBM pSeries machines. It
includes utilities that are potentially useful outside the current project. Parts of
the software also have the potential to be used on other platforms. Support for
Linux ≥ 2.5 is being added as useful features become available. Relationships
between lsvpd and other hardware inventory systems, such as kudzu need to
be investigated, as do alternative database back-ends. A hardware inventory
database, such as that used by the lsvpd package, should be put forward as
an information source for persistent device naming. Change management also
needs to be addressed.

11 http://www.dmtf.org/standards/documents/CIM/CIM Schema27/CIM Core27-Final.pdf

14 References

Thanks. . .

• The IBM OzLabs team — an amazing group of people to work with —
and a host of other IBMers.

• Patrick Mochel for useful discussions about sysfs.

• Mel.

Legal Statement

• This work represents the view of the author and does not necessarily
represent the view of IBM.

• The Linux lsvpd package is distributed under the GNU General Public
License.

• IBM, pSeries, PowerPC and AIX are trademarks or registered trademarks
of International Business Machines Corporation in the United States and/or
other countries.

• Linux is a registered trademark of Linus Torvalds.

• Other company, product, and service names may be trademarks or service
marks of others.

References

[1] Martin Schwenke. My computer is bigger than yours! In
Linux.Conf.AU 2003 <http://linux.org.au/conf/2003/>,
January 2003. Paper and slides also available from
<http://meltin.net/people/martin/publications/bigger.html>.

[2] PCI Local Bus Specification. Release 2.2. PCI Special Interest Group.
December 18, 1998.

