
1/33

�

�

�

�

�

�

	

AUUG 2003 Conference
Open Standards, Open Source, Open Computing

3 September 2003

Linux hardware inventory:
Current reality, future possibilities

Martin Schwenke
IBM OzLabs Linux Technology Center

<martins@au.ibm.com> · <martin@meltin.net>

2/33

�

�

�

�

�

�

	

The plan. . .

• Introduction.

– Hardware inventory on Linux r©and AIX r©.

• Are we there yet?

– Progress on the Linux lsvpd project so far.

• Where to now?

• Conclusions, questions, . . .

3/33

�

�

�

�

�

�

	

Current Linux reality

• Linux has hardware inventory systems such as Red Hat’s kudzu and

SuSE’s hwinfo.

3/33

�

�

�

�

�

�

	

Current Linux reality

• Linux has hardware inventory systems such as Red Hat’s kudzu and

SuSE’s hwinfo.

• Used mainly for device detection and automated driver selection.

3/33

�

�

�

�

�

�

	

Current Linux reality

• Linux has hardware inventory systems such as Red Hat’s kudzu and

SuSE’s hwinfo.

• Used mainly for device detection and automated driver selection.

• Information persists between boots.

4/33

�

�

�

�

�

�

	

AIX reality

• Large, mature hardware inventory system.

4/33

�

�

�

�

�

�

	

AIX reality

• Large, mature hardware inventory system.

• Among other things, the Object Data Manager (ODM) contains

Vital Product Data (VPD):

4/33

�

�

�

�

�

�

	

AIX reality

• Large, mature hardware inventory system.

• Among other things, the Object Data Manager (ODM) contains

Vital Product Data (VPD):

– Generic, static information about components.

– Dynamic information about components, including

configuration.

4/33

�

�

�

�

�

�

	

AIX reality

• Large, mature hardware inventory system.

• Among other things, the Object Data Manager (ODM) contains

Vital Product Data (VPD):

– Generic, static information about components.

– Dynamic information about components, including

configuration.

• Persistent device naming based on device/slot information (from

VPD).

4/33

�

�

�

�

�

�

	

AIX reality

• Large, mature hardware inventory system.

• Among other things, the Object Data Manager (ODM) contains

Vital Product Data (VPD):

– Generic, static information about components.

– Dynamic information about components, including

configuration.

• Persistent device naming based on device/slot information (from

VPD).

• lsvpd lists VPD in human/machine readable format.

• lscfg lists VPD (and other info) in human readable format.

5/33

�

�

�

�

�

�

	

Example of VPD (lsvpd-style)

*DS 2 RIO-PCI COPPER

*SN YL1182260007

*PN 53P3820

*CC 2887

*FN 53P3800

*VK RS6K

*YL U0.4-P1.1

6/33

�

�

�

�

�

�

	

Example of VPD (explained)

*DS 2 RIO-PCI COPPER # Description

*SN YL1182260007 # Serial Number

*PN 53P3820 # Part Number

*CC 2887

*FN 53P3800 # FRU (Field Replaceable Unit) Number

*VK RS6K

*YL U0.4-P1.1 # Physical Location:

Extender 1, on backplane 1, in drawer 4, in rack 0.

7/33

�

�

�

�

�

�

	

Are we there yet?

• General requirement:

7/33

�

�

�

�

�

�

	

Are we there yet?

• General requirement:

Implement lsvpd on Linux.

7/33

�

�

�

�

�

�

	

Are we there yet?

• General requirement:

Implement lsvpd on Linux.

• Various iterations of:

– more specific requirements

– ‘schedule’

– choice of implementation language(s)

– implementation

– future plans

– . . .

8/33

�

�

�

�

�

�

	

Requirements #1 (May 2001)

• Find ibm,vpd properties in the Open Firmware device-tree and

pretty print them.

• Time required: a few hours.

9/33

�

�

�

�

�

�

	

Example of PCI VPD

82 10 00 32 20 52 49 4f 2d 50 43 49 20 43 4f 50 |...2 RIO-PCI COP|

50 45 52 90 3e 00 53 4e 0c 59 4c 31 31 38 32 32 |PER.>.SN.YL11822|

36 30 30 30 37 50 4e 07 35 33 50 33 38 32 30 43 |60007PN.53P3820C|

43 04 32 38 38 37 46 4e 08 20 35 33 50 33 38 30 |C.2887FN. 53P380|

30 56 4b 04 52 53 36 4b 59 4c 09 55 30 2e 34 2d |0VK.RS6KYL.U0.4-|

50 31 2e 31 79 ec |P1.1y.|

10/33

�

�

�

�

�

�

	

This should take a few hours

• Simple reverse-engineering, parsing and pretty-printing task.

10/33

�

�

�

�

�

�

	

This should take a few hours

• Simple reverse-engineering, parsing and pretty-printing task.

• Single Perl script ‘lsvpd’.

10/33

�

�

�

�

�

�

	

This should take a few hours

• Simple reverse-engineering, parsing and pretty-printing task.

• Single Perl script ‘lsvpd’.

• ibm,vpd files in a format that is well defined in the PCI

specification.

10/33

�

�

�

�

�

�

	

This should take a few hours

• Simple reverse-engineering, parsing and pretty-printing task.

• Single Perl script ‘lsvpd’.

• ibm,vpd files in a format that is well defined in the PCI

specification.

• Not so much reverse-engineering.

11/33

�

�

�

�

�

�

	

Requirements #2 (June 2001?)

• ‘Things like SCSI devices are missing!’

11/33

�

�

�

�

�

�

	

Requirements #2 (June 2001?)

• ‘Things like SCSI devices are missing!’

• Find ibm,vpd properties in the Open Firmware device-tree and

pretty print them. Also print information about SCSI devices.

11/33

�

�

�

�

�

�

	

Requirements #2 (June 2001?)

• ‘Things like SCSI devices are missing!’

• Find ibm,vpd properties in the Open Firmware device-tree and

pretty print them. Also print information about SCSI devices.

• Time required: a few days.

12/33

�

�

�

�

�

�

	

SCSI standard inquiry output

00 00 03 02 9f 00 01 3a 49 42 4d 20 20 20 20 20 |.......:IBM |

49 43 33 35 4c 30 33 36 55 43 44 32 31 30 2d 30 |IC35L036UCD210-0|

53 35 42 53 56 4d 46 39 39 33 31 38 30 37 4e 34 |S5BSVMF9931807N4|

39 30 38 20 20 20 20 20 0c 00 00 00 00 00 00 00 |908|

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

20 20 30 30 37 35 30 32 31 37 32 00 30 30 30 31 | 007502172.0001|

32 32 30 39 50 33 39 32 33 20 20 20 20 20 48 33 |2209P3923 H3|

32 30 35 31 20 20 20 20 30 37 4e 37 30 37 30 20 |2051 07N7070 |

20 20 20 20 46 38 30 34 37 30 20 20 20 20 32 30 | F80470 20|

30 32 00 00 |02..|

13/33

�

�

�

�

�

�

	

Snazzy SCSI solutions

• update-device-tree:

13/33

�

�

�

�

�

�

	

Snazzy SCSI solutions

• update-device-tree:
1. Copy /proc/device-tree to /var/lib/device-tree.

13/33

�

�

�

�

�

�

	

Snazzy SCSI solutions

• update-device-tree:
1. Copy /proc/device-tree to /var/lib/device-tree.

2. Use sg inq to do SCSI inquiries.

13/33

�

�

�

�

�

�

	

Snazzy SCSI solutions

• update-device-tree:
1. Copy /proc/device-tree to /var/lib/device-tree.

2. Use sg inq to do SCSI inquiries.

3. Extract ‘VPD fields’ from output according to templates.

13/33

�

�

�

�

�

�

	

Snazzy SCSI solutions

• update-device-tree:
1. Copy /proc/device-tree to /var/lib/device-tree.

2. Use sg inq to do SCSI inquiries.

3. Extract ‘VPD fields’ from output according to templates.

4. Find device-tree node and drop in linux,vpd file.

13/33

�

�

�

�

�

�

	

Snazzy SCSI solutions

• update-device-tree:
1. Copy /proc/device-tree to /var/lib/device-tree.

2. Use sg inq to do SCSI inquiries.

3. Extract ‘VPD fields’ from output according to templates.

4. Find device-tree node and drop in linux,vpd file.

• lsvpd:

13/33

�

�

�

�

�

�

	

Snazzy SCSI solutions

• update-device-tree:
1. Copy /proc/device-tree to /var/lib/device-tree.

2. Use sg inq to do SCSI inquiries.

3. Extract ‘VPD fields’ from output according to templates.

4. Find device-tree node and drop in linux,vpd file.

• lsvpd:
1. Find all files called ibm,vpd and render them.

13/33

�

�

�

�

�

�

	

Snazzy SCSI solutions

• update-device-tree:
1. Copy /proc/device-tree to /var/lib/device-tree.

2. Use sg inq to do SCSI inquiries.

3. Extract ‘VPD fields’ from output according to templates.

4. Find device-tree node and drop in linux,vpd file.

• lsvpd:
1. Find all files called ibm,vpd and render them.

2. Find all files called linux,vpd and cat them.

13/33

�

�

�

�

�

�

	

Snazzy SCSI solutions

• update-device-tree:
1. Copy /proc/device-tree to /var/lib/device-tree.

2. Use sg inq to do SCSI inquiries.

3. Extract ‘VPD fields’ from output according to templates.

4. Find device-tree node and drop in linux,vpd file.

• lsvpd:
1. Find all files called ibm,vpd and render them.

2. Find all files called linux,vpd and cat them.

• This introduced a ‘database’.

14/33

�

�

�

�

�

�

	

SCSI standard inquiry output

*DS 16 Bit LVD SCSI Disk Drive

*AX /dev/sda

*MF IBM

*TM IC35L036UCD210-0

*YL U0.4-P1-I1/Z2-A8

*FN 09P3923

*RL 53354253

*SN VMF99318

*EC H32051

*PN 07N7070

*Z0 000003029F00013A

*Z1 07N4908

*Z2 0075

*Z3 02172

*Z4 0001

*Z5 22

*Z6 F80470

*Z7 500507620CC4AC8E

15/33

�

�

�

�

�

�

	

Perls of wisdom

• Perl’s unpack function is very useful for parsing binary data,

including PCI VPD chunks.

15/33

�

�

�

�

�

�

	

Perls of wisdom

• Perl’s unpack function is very useful for parsing binary data,

including PCI VPD chunks.

• SCSI inquiries reimplemented using Perl’s ioctl function.

15/33

�

�

�

�

�

�

	

Perls of wisdom

• Perl’s unpack function is very useful for parsing binary data,

including PCI VPD chunks.

• SCSI inquiries reimplemented using Perl’s ioctl function.

• Finding physical location was problematic:

– Easy to determine the SCSI host adapter associated with a

device.

15/33

�

�

�

�

�

�

	

Perls of wisdom

• Perl’s unpack function is very useful for parsing binary data,

including PCI VPD chunks.

• SCSI inquiries reimplemented using Perl’s ioctl function.

• Finding physical location was problematic:

– Easy to determine the SCSI host adapter associated with a

device.

– Need to parse, for example, /proc/scsi/sym53c8xx/0.

15/33

�

�

�

�

�

�

	

Perls of wisdom

• Perl’s unpack function is very useful for parsing binary data,

including PCI VPD chunks.

• SCSI inquiries reimplemented using Perl’s ioctl function.

• Finding physical location was problematic:

– Easy to determine the SCSI host adapter associated with a

device.

– Need to parse, for example, /proc/scsi/sym53c8xx/0.

– File format is driver-specific.

15/33

�

�

�

�

�

�

	

Perls of wisdom

• Perl’s unpack function is very useful for parsing binary data,

including PCI VPD chunks.

• SCSI inquiries reimplemented using Perl’s ioctl function.

• Finding physical location was problematic:

– Easy to determine the SCSI host adapter associated with a

device.

– Need to parse, for example, /proc/scsi/sym53c8xx/0.

– File format is driver-specific.

– More templates. . .

16/33

�

�

�

�

�

�

	

Missing bits

• lspci:
[...]

241:1.0 SCSI storage controller: LSI Logic / Symbios 53c1010 [...]

[...]

• /proc/scsi/sym53c8xx/0:
Chip sym53c1010-66, device id 0x21, revision id 0x1

On PCI bus 65, device 1, function 0, IRQ 69

[...]

• device-tree:
od -t d /var/lib/lsvpd/device-tree/pci*/bus-range

0000000 0 254 0 254

*

0000460

16/33

�

�

�

�

�

�

	

Missing bits

• lspci:
[...]

241:1.0 SCSI storage controller: LSI Logic / Symbios 53c1010 [...]

[...]

• /proc/scsi/sym53c8xx/0:
Chip sym53c1010-66, device id 0x21, revision id 0x1

On PCI bus 65, device 1, function 0, IRQ 69

[...]

• device-tree:
od -t d /var/lib/lsvpd/device-tree/pci*/bus-range

0000000 0 254 0 254

*

0000460

• Patched sym53c8xx 2 driver to print full bus number.

• Patched pSeriesTMsetup code to drop linux,phbnum property in

for each PCI host bus.

17/33

�

�

�

�

�

�

	

More Perls of wisdom

• In June 2002, we decided Perl wasn’t appropriate for this purpose,

since it lives in /usr, which might not be available (early enough).

17/33

�

�

�

�

�

�

	

More Perls of wisdom

• In June 2002, we decided Perl wasn’t appropriate for this purpose,

since it lives in /usr, which might not be available (early enough).

• The Perl version retrospectively became a prototype.

17/33

�

�

�

�

�

�

	

More Perls of wisdom

• In June 2002, we decided Perl wasn’t appropriate for this purpose,

since it lives in /usr, which might not be available (early enough).

• The Perl version retrospectively became a prototype.

• However, a scripting language was useful for the main programs.

17/33

�

�

�

�

�

�

	

More Perls of wisdom

• In June 2002, we decided Perl wasn’t appropriate for this purpose,

since it lives in /usr, which might not be available (early enough).

• The Perl version retrospectively became a prototype.

• However, a scripting language was useful for the main programs.

• The templates for describing how to parse SCSI inquiry data were

too verbose and difficult to manage.

17/33

�

�

�

�

�

�

	

More Perls of wisdom

• In June 2002, we decided Perl wasn’t appropriate for this purpose,

since it lives in /usr, which might not be available (early enough).

• The Perl version retrospectively became a prototype.

• However, a scripting language was useful for the main programs.

• The templates for describing how to parse SCSI inquiry data were

too verbose and difficult to manage.

• Copy of device-tree as a database seemed to work. . .

17/33

�

�

�

�

�

�

	

More Perls of wisdom

• In June 2002, we decided Perl wasn’t appropriate for this purpose,

since it lives in /usr, which might not be available (early enough).

• The Perl version retrospectively became a prototype.

• However, a scripting language was useful for the main programs.

• The templates for describing how to parse SCSI inquiry data were

too verbose and difficult to manage.

• Copy of device-tree as a database seemed to work. . .

• . . . as did the split in functionality between lsvpd and

update-device-tree.

18/33

�

�

�

�

�

�

	

Requirements #3 (June 2002)

• ‘Perl isn’t around early enough at boot time!’

18/33

�

�

�

�

�

�

	

Requirements #3 (June 2002)

• ‘Perl isn’t around early enough at boot time!’

• Find ibm,vpd properties in the Open Firmware device-tree and

pretty print them. Also print information about SCSI devices. Use

programming languages that are supported with just a root

filesystem.

18/33

�

�

�

�

�

�

	

Requirements #3 (June 2002)

• ‘Perl isn’t around early enough at boot time!’

• Find ibm,vpd properties in the Open Firmware device-tree and

pretty print them. Also print information about SCSI devices. Use

programming languages that are supported with just a root

filesystem.

• Time required: a few weeks.

19/33

�

�

�

�

�

�

	

C & shell (no seashores. . .)

• Scripting languages are good. . .

19/33

�

�

�

�

�

�

	

C & shell (no seashores. . .)

• Scripting languages are good. . .

• . . . but the only scripting language on the root filesystem is the

shell.

19/33

�

�

�

�

�

�

	

C & shell (no seashores. . .)

• Scripting languages are good. . .

• . . . but the only scripting language on the root filesystem is the

shell.

• /bin/bash can be assumed to be available. . .

19/33

�

�

�

�

�

�

	

C & shell (no seashores. . .)

• Scripting languages are good. . .

• . . . but the only scripting language on the root filesystem is the

shell.

• /bin/bash can be assumed to be available. . .

• . . . and has good arithmetic support and other features.

19/33

�

�

�

�

�

�

	

C & shell (no seashores. . .)

• Scripting languages are good. . .

• . . . but the only scripting language on the root filesystem is the

shell.

• /bin/bash can be assumed to be available. . .

• . . . and has good arithmetic support and other features.

• C chosen for ‘helper utilities’.

19/33

�

�

�

�

�

�

	

C & shell (no seashores. . .)

• Scripting languages are good. . .

• . . . but the only scripting language on the root filesystem is the

shell.

• /bin/bash can be assumed to be available. . .

• . . . and has good arithmetic support and other features.

• C chosen for ‘helper utilities’.

• glib-2.0 chosen as a utility library.

20/33

�

�

�

�

�

�

	

Updating update-device-tree

• update-device-tree is run relatively rarely.

• lsvpd is run more often.

20/33

�

�

�

�

�

�

	

Updating update-device-tree

• update-device-tree is run relatively rarely.

• lsvpd is run more often.

• lsvpd should be as simple as possible — no rendering — just find

linux,vpd files and cat them.

20/33

�

�

�

�

�

�

	

Updating update-device-tree

• update-device-tree is run relatively rarely.

• lsvpd is run more often.

• lsvpd should be as simple as possible — no rendering — just find

linux,vpd files and cat them.

• update-device-tree to do all the rendering.

20/33

�

�

�

�

�

�

	

Updating update-device-tree

• update-device-tree is run relatively rarely.

• lsvpd is run more often.

• lsvpd should be as simple as possible — no rendering — just find

linux,vpd files and cat them.

• update-device-tree to do all the rendering.

• sed is my best friend.

20/33

�

�

�

�

�

�

	

Updating update-device-tree

• update-device-tree is run relatively rarely.

• lsvpd is run more often.

• lsvpd should be as simple as possible — no rendering — just find

linux,vpd files and cat them.

• update-device-tree to do all the rendering.

• sed is my best friend.

• Depend on busybox for find and sort.

21/33

�

�

�

�

�

�

	

Rendering ibm,vpd

• pci vpd to txt.[ch]

• ibm vpd render.c

• How is ibm,vpd different to PCI VPD?

22/33

�

�

�

�

�

�

	

Rendering SCSI VPD

• Obvious C helper is sg inq.

• Small patch to add -r option (raw, binary output) accepted into

sg3 utils 1.01.

22/33

�

�

�

�

�

�

	

Rendering SCSI VPD

• Obvious C helper is sg inq.

• Small patch to add -r option (raw, binary output) accepted into

sg3 utils 1.01.

• scsi vpd std (in C) to parse 1st 32 bytes of standard inquiry.

22/33

�

�

�

�

�

�

	

Rendering SCSI VPD

• Obvious C helper is sg inq.

• Small patch to add -r option (raw, binary output) accepted into

sg3 utils 1.01.

• scsi vpd std (in C) to parse 1st 32 bytes of standard inquiry.

• scsi vpd custom (in C) to extract custom fields via templates.

• Template format (actually single-line):

IBM;disk;*;

inquiry=RL:4,SN:8,Z1:12,_:42,Z2:4,Z3:5,_:1,

Z4:4,Z5:2,FN:12,EC:10,PN:12,Z6:10,_:4;

0x83=_:8,Z7:8

23/33

�

�

�

�

�

�

	

Enter lscfg

• ‘Human readable’ output, plus platform specific information.

23/33

�

�

�

�

�

�

	

Enter lscfg

• ‘Human readable’ output, plus platform specific information.
sda U0.4-P1-I1/Z2-A8 16 Bit LVD SCSI Disk Drive (36400 MB)

Manufacturer................IBM

Machine Type and Model......IC35L036UCD210-0

Device Specific.(YL)........U0.4-P1-I1/Z2-A8

FRU Number..................09P3923

ROS Level and ID............53354253

Serial Number...............VMF99318

EC Level....................H32051

Part Number.................07N7070

Device Specific.(Z0)........000003029F00013A

Device Specific.(Z1)........07N4908

Device Specific.(Z2)........0075

Device Specific.(Z3)........02172

Device Specific.(Z4)........0001

Device Specific.(Z5)........22

Device Specific.(Z6)........F80470

Device Specific.(Z7)........500507620CC4AC8E

• Initially lscfg was a pretty printer.

24/33

�

�

�

�

�

�

	

Cross platforms?

• This could be useful on platforms other than pSeries.

24/33

�

�

�

�

�

�

	

Cross platforms?

• This could be useful on platforms other than pSeries.

• Currently get PCI 2.0/2.1 VPD from device-tree.

24/33

�

�

�

�

�

�

	

Cross platforms?

• This could be useful on platforms other than pSeries.

• Currently get PCI 2.0/2.1 VPD from device-tree.

• Attempted to write pci vpd rom grab.

24/33

�

�

�

�

�

�

	

Cross platforms?

• This could be useful on platforms other than pSeries.

• Currently get PCI 2.0/2.1 VPD from device-tree.

• Attempted to write pci vpd rom grab.

• Wrote pci vpd cap grab.

25/33

�

�

�

�

�

�

	

Testing times (prelude)

• In February 2003, people started testing out the lsvpd package. . .

26/33

�

�

�

�

�

�

	

Requirements #4 (February 2003)

• ‘lscfg is very different to the AIX version.’

• ‘There’s a lot of stuff missing. . . ’

• Find ibm,vpd properties in the Open Firmware device-tree and

pretty print them. Also print information about SCSI devices. Use

programming languages that are supported with just a root

filesystem. Make lscfg work a lot more like the AIX version,

implement a whole bunch of options and make more components

visible.

• Required time: 6 weeks.

27/33

�

�

�

�

�

�

	

Testing times (summary)

• lscfg updated to show platform specific information. Tied more

closely to device-tree.

• Synthesised VPD for SCSI and Ethernet adapters from information

in the device-tree.

27/33

�

�

�

�

�

�

	

Testing times (summary)

• lscfg updated to show platform specific information. Tied more

closely to device-tree.

• Synthesised VPD for SCSI and Ethernet adapters from information

in the device-tree.

• Distro kernels used sym53c8xx driver. Oops. . .

27/33

�

�

�

�

�

�

	

Testing times (summary)

• lscfg updated to show platform specific information. Tied more

closely to device-tree.

• Synthesised VPD for SCSI and Ethernet adapters from information

in the device-tree.

• Distro kernels used sym53c8xx driver. Oops. . .

• . . . added IRQ-matching hack to compensate for broken bus

numbers.

27/33

�

�

�

�

�

�

	

Testing times (summary)

• lscfg updated to show platform specific information. Tied more

closely to device-tree.

• Synthesised VPD for SCSI and Ethernet adapters from information

in the device-tree.

• Distro kernels used sym53c8xx driver. Oops. . .

• . . . added IRQ-matching hack to compensate for broken bus

numbers.

• Released version 0.8.4 as part of SourceForge.net linux-diag project

in May 2003.

27/33

�

�

�

�

�

�

	

Testing times (summary)

• lscfg updated to show platform specific information. Tied more

closely to device-tree.

• Synthesised VPD for SCSI and Ethernet adapters from information

in the device-tree.

• Distro kernels used sym53c8xx driver. Oops. . .

• . . . added IRQ-matching hack to compensate for broken bus

numbers.

• Released version 0.8.4 as part of SourceForge.net linux-diag project

in May 2003.

• Move various bits towards being ‘hotplug useful’.

27/33

�

�

�

�

�

�

	

Testing times (summary)

• lscfg updated to show platform specific information. Tied more

closely to device-tree.

• Synthesised VPD for SCSI and Ethernet adapters from information

in the device-tree.

• Distro kernels used sym53c8xx driver. Oops. . .

• . . . added IRQ-matching hack to compensate for broken bus

numbers.

• Released version 0.8.4 as part of SourceForge.net linux-diag project

in May 2003.

• Move various bits towards being ‘hotplug useful’.

• PCI domain support now in Linux 2.6.

• Under 2.6, use sysfs to get PCI information.

27/33

�

�

�

�

�

�

	

Testing times (summary)

• lscfg updated to show platform specific information. Tied more

closely to device-tree.

• Synthesised VPD for SCSI and Ethernet adapters from information

in the device-tree.

• Distro kernels used sym53c8xx driver. Oops. . .

• . . . added IRQ-matching hack to compensate for broken bus

numbers.

• Released version 0.8.4 as part of SourceForge.net linux-diag project

in May 2003.

• Move various bits towards being ‘hotplug useful’.

• PCI domain support now in Linux 2.6.

• Under 2.6, use sysfs to get PCI information.

• 1500 lines of bash script and 1500 lines of C source.

28/33

�

�

�

�

�

�

	

Goodbye glib!

• The root-filesystem-only requirement meant statically linking to

libglib.a. Big executables!

• Some code shoe-horned to work with glib to make it more

maintainable!

• glib didn’t do everything. . .

28/33

�

�

�

�

�

�

	

Goodbye glib!

• The root-filesystem-only requirement meant statically linking to

libglib.a. Big executables!

• Some code shoe-horned to work with glib to make it more

maintainable!

• glib didn’t do everything. . .

• Goodbye glib!

28/33

�

�

�

�

�

�

	

Goodbye glib!

• The root-filesystem-only requirement meant statically linking to

libglib.a. Big executables!

• Some code shoe-horned to work with glib to make it more

maintainable!

• glib didn’t do everything. . .

• Goodbye glib!

• Only had to ‘rewrite’ a tiny bit of glib’s self-expanding string

functionality.

28/33

�

�

�

�

�

�

	

Goodbye glib!

• The root-filesystem-only requirement meant statically linking to

libglib.a. Big executables!

• Some code shoe-horned to work with glib to make it more

maintainable!

• glib didn’t do everything. . .

• Goodbye glib!

• Only had to ‘rewrite’ a tiny bit of glib’s self-expanding string

functionality.

• asprintf(3) is a thing of beauty!

28/33

�

�

�

�

�

�

	

Goodbye glib!

• The root-filesystem-only requirement meant statically linking to

libglib.a. Big executables!

• Some code shoe-horned to work with glib to make it more

maintainable!

• glib didn’t do everything. . .

• Goodbye glib!

• Only had to ‘rewrite’ a tiny bit of glib’s self-expanding string

functionality.

• asprintf(3) is a thing of beauty!

• So is fnmatch(3)

29/33

�

�

�

�

�

�

	

Cross platforms with sysfs

• sysfs contains useful information. . .

29/33

�

�

�

�

�

�

	

Cross platforms with sysfs

• sysfs contains useful information. . .

• . . . enough for partial implementation of update-device-tree. . .

29/33

�

�

�

�

�

�

	

Cross platforms with sysfs

• sysfs contains useful information. . .

• . . . enough for partial implementation of update-device-tree. . .

• . . . without a device-tree.

29/33

�

�

�

�

�

�

	

Cross platforms with sysfs

• sysfs contains useful information. . .

• . . . enough for partial implementation of update-device-tree. . .

• . . . without a device-tree.

• lsvpd even ‘runs’ on my ThinkPad r©.

30/33

�

�

�

�

�

�

	

Self-selecting modules

• Modularised update-device-tree, lsvpd & lscfg.

30/33

�

�

�

�

�

�

	

Self-selecting modules

• Modularised update-device-tree, lsvpd & lscfg.

• Self-selecting modules. For example:

/lib/lsvpd/scan.d/30device-tree:

[...]

source_device_tree="/proc/device-tree"

[-f "${source_device_tree}/system-id"] || return 0

[...]

• Current modules:

scan.d/{00minimal,01ethtool,10devfs,

20sysfs,30device-tree,40ibm,vpd}

lscfg.d/{00minimal,40ibm,vpd}

common.d/00minimal

• Subsequent modules redefine bash functions from earlier modules.

31/33

�

�

�

�

�

�

	

Future possibilities

• PCI expansion ROM blobs in sysfs?

31/33

�

�

�

�

�

�

	

Future possibilities

• PCI expansion ROM blobs in sysfs?

• lsvpd helping to support persistent device naming.

31/33

�

�

�

�

�

�

	

Future possibilities

• PCI expansion ROM blobs in sysfs?

• lsvpd helping to support persistent device naming.

• Change management (mostly device/name changes).

31/33

�

�

�

�

�

�

	

Future possibilities

• PCI expansion ROM blobs in sysfs?

• lsvpd helping to support persistent device naming.

• Change management (mostly device/name changes).

• Large systems (> 128 SCSI disks)?

31/33

�

�

�

�

�

�

	

Future possibilities

• PCI expansion ROM blobs in sysfs?

• lsvpd helping to support persistent device naming.

• Change management (mostly device/name changes).

• Large systems (> 128 SCSI disks)?

• Larger major/minor numbers?

31/33

�

�

�

�

�

�

	

Future possibilities

• PCI expansion ROM blobs in sysfs?

• lsvpd helping to support persistent device naming.

• Change management (mostly device/name changes).

• Large systems (> 128 SCSI disks)?

• Larger major/minor numbers?

• sysfs support for sg driver?

31/33

�

�

�

�

�

�

	

Future possibilities

• PCI expansion ROM blobs in sysfs?

• lsvpd helping to support persistent device naming.

• Change management (mostly device/name changes).

• Large systems (> 128 SCSI disks)?

• Larger major/minor numbers?

• sysfs support for sg driver?

• lsvpd scalability?

31/33

�

�

�

�

�

�

	

Future possibilities

• PCI expansion ROM blobs in sysfs?

• lsvpd helping to support persistent device naming.

• Change management (mostly device/name changes).

• Large systems (> 128 SCSI disks)?

• Larger major/minor numbers?

• sysfs support for sg driver?

• lsvpd scalability?

• A standard backend?

– sysfs-based?

– Common-Information-Model (CIM) Object Manager (or

CIMOM)?

– Database used by kudzu?

32/33

�

�

�

�

�

�

	

Conclusions

• Started as a ‘toy’.

32/33

�

�

�

�

�

�

	

Conclusions

• Started as a ‘toy’.

• Now used ‘in anger’.

32/33

�

�

�

�

�

�

	

Conclusions

• Started as a ‘toy’.

• Now used ‘in anger’.

• Lots of work to do. . .

32/33

�

�

�

�

�

�

	

Conclusions

• Started as a ‘toy’.

• Now used ‘in anger’.

• Lots of work to do. . .

• Time required:

32/33

�

�

�

�

�

�

	

Conclusions

• Started as a ‘toy’.

• Now used ‘in anger’.

• Lots of work to do. . .

• Time required: ?

33/33

�

�

�

�

�

�

	

Questions?

?

Legal Statement
• This work represents the view of the author and does not necessarily represent the view of IBM.
• Linux is a registered trademark of Linus Torvalds.
• The Linux lsvpd package is distributed under the GNU General Public License.
• The following terms are trademarks or registered trademarks of International Business Machines Corporation in the

United States and/or other countries: IBM, , pSeries, ThinkPad and AIX.
• Other company, product, and service names may be trademarks or service marks of others.

	The plan…
	Current Linux reality
	AIX reality
	Example of VPD (lsvpd-style)
	Example of VPD (explained)
	Are we there yet?
	Requirements #1 (May 2001)
	Example of PCI VPD
	This should take a few hours
	Requirements #2 (June 2001?)
	SCSI standard inquiry output
	Snazzy SCSI solutions
	SCSI standard inquiry output
	Perls of wisdom
	Missing bits
	More Perls of wisdom
	Requirements #3 (June 2002)
	C & shell (no seashores…)
	Updating update-device-tree
	Rendering ibm,vpd
	Rendering SCSI VPD
	Enter lscfg
	Cross platforms?
	Testing times (prelude)
	Requirements #4 (February 2003)
	Testing times (summary)
	Goodbye glib!
	Cross platforms with sysfs
	Self-selecting modules
	Future possibilities
	Conclusions
	Questions?

