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Abstract. This paper attempts to address software specification, design
and implementation reuse by bringing together work from a number of
areas of program development. Refinement calculi are based on wide-
spectrum languages that include abstract, logical specifications, which
are transformed into executable programs. Functional and relational cal-
culi allow programs and specifications to be manipulated using higher-
order operations in powerful algebraic setting. Promotion is used in the
Z specification notation to allow simple operations to be reused within a
more complex framework. Specification conjunction has also been used
in refinement calculi as an aid to reuse. We provide a series of examples
that bring various elements of these areas together. Our examples cen-
tre on programs that can be elegantly specified by a calculation of all
permutations of an input list, combined with some restriction on these
permutations. This paper represents work in progress, so some of the ex-
amples are incomplete and, therefore, do not serve as convincing positive
examples of the method. Also, much of the work has not been completely
formalised. Our main contribution is to show that the combined approach
can work in some cases and, when it does work, it is extremely profitable.

1 Introduction

The imperative refinement calculi of Back [2], Morgan [11] and Morris [12] allow
imperative programs to be developed that are correct with respect to their spec-
ifications. The specifications are usually logical specifications, containing predi-
cates that constrain their behaviour. Although these calculi meet their goal of
making program development a mathematical activity, they operate at quite a
low level of abstraction, and we believe that they are difficult to use.

Functional programming languages allow programs to be written at a higher
level of abstraction that imperative languages. According to Hughes [8], one rea-
son for this is the use of higher-order functions. Functional programming calculi,
such as Bird [4], are based on higher-order functions and contain correspond-
ingly high-order rules for manipulating programs. One reason for this is that
higher-order functions provide a level of indirection when they operate on data
structures, allowing for ‘pointless’ rules that deal with compositions of functions
rather than the application of functions to variables. Relational calculi, such as
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that of Aarts, Backhouse, et al [1], add nondeterminism and also provide a very
high-level of abstraction. We believe that the elegance and level of abstraction
found in these calculi are due to a profound understanding of the data structures
involved.

There has been a substantial amount of work on refinement calculi targeted at
functional programming languages (expression refinement calculi; for examples,
see Norvell and Hehner [14], Ward [21], Schwenke and Robinson [17], Bunken-
burg [5], Morris [13], Mahony [10], Schwenke and Mahony [16]). However, we
believe that none of this work attempts to exploit the use of higher-order func-
tions, based on known data structures, to help make refinement easier.

In the Z notation (Spivey [18]) low-level operations that operate on some type
are often promoted so that they operate on collections involving that type. This
method of specification reuse is similar to the way that functional languages
allow operations to be ‘plugged’ into the framework provided by higher-order
functions. Another method of combining specifications, which is also found in Z,
is conjunction. Ward [20] and Groves [6] have explored the use of conjunction in
the refinement calculus as a means of building specifications from components,
and possibly reusing components. Mahony [9] provides a theoretical basis for
conjunction in the refinement calculus and explores the relationship between
conjunction and promotion.

We provide a series of examples involving all of these ideas. The style of pre-
sentation if fairly informal. We assume that we have an expression refinement
calculus that provides all of the standard, useful refinement rules, like weak-
ening preconditions and strengthening postconditions. Most of the expression
refinement calculi mentioned above are at least partially suitable. We introduce
notation and describe semantics informally. We hope to convince the reader that
our examples would not be much more difficult if they were presented formally.
Some of the examples are incomplete, and it is unclear whether they could ac-
tually be completed in the desired style.

2 Conjunction

Conjunction operators are well known in specification notations, but are less
familiar in programming languages. We use ∩ to represent conjunction across
our wide-spectrum language. The meaning is obvious if relational (or set-based)
semantics are used, and is fairly intuitive for predicate transformer semantics.
In particular, conjoining two function specifications means conjoining their pre-
conditions and postconditions respectively.

(λ x • P1 >− u y |R1 )
∩

(λ x • P2 >− u y |R2 )
=

λ x •

P1

∧
P2

 >− u y

∣∣∣∣∣∣
R1

∧
R2

 (1)

In the above function specifications, Pi represents a precondition that restricts
input x , and the output y is chosen to satisfy a postcondition Ri .
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We also require conjunction to be monotonic with respect to refinement.

a v a ′, b v b′

a ∩ b v a ′ ∩ b′
(2)

Our belief is that conjunction can be put to good use, ‘welding’ together
programs of identical structure. This is particularly true when programs are
written using higher-order operations. More generally, if two programs can be
written using a common recursive or iterative framework, then the conjunction
of the two can be written using a single instance of that framework. That is,
function application distributes weakly over refinement.

f a ∩ f b v f (a ∩ b) (3)

We can take f to be a higher-order function that represents the common frame-
work. The above condition holds under relational semantics even if f is a relation
instead of a function. It probably also holds under predicate transformer seman-
tics.

3 A Singular Insertion Sort

We provide a specification of sorting, and provide a high-level derivation that
produces an insertion sort algorithm. We characterise the derivation in this
section as being singular because we specify a program that produces a sin-
gle output and describe how it is related to its input. This contrasts with the
derivation in the next section, which explicitly uses set-valued functions.

We begin with a specification of sort , as follows:

sort :: (Ord α)⇒ [α]→ [α]
sort = perm ∩ ascendingOutput

(4)

The notation used is based on Haskell [15]. The function sort is defined between
lists of elements [α]. The elements can be of any type that has an ordering
(Ord α), permitting operations such as < (less than). We use the algebraic ‘cons’
lists found in functional programming languages, rather than the function-based
sequences found in Z. An informal interpretation of the above specification is
that to sort a list we must produce an ascending permutation of the input.

3.1 Defining and Refining Permutations

The relation perm takes a list and returns a list containing the same items as
the original.

perm :: [α]→ [α]
perm = (λ xs • (u ys | items ys = items xs ))

(5)
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The body of the λ-abstraction is a generalised choice, or a logical specification
of an expression. Note that although we are using ‘cons’ lists we use a Z-style
items function to convert lists to bags.

We assume that we can implement perm using foldr . foldr is probably the
best known example of a catamorphism, which is a special type of operation that
employs recursion over an inductive datatype.

perm v foldr include [] (6)

The initial value of the computation is the empty list, [], and foldr moves along
the input list, using the accumulation relation, include, to add each item to its
output.

The specification of include is quite relaxed. It insists that all the items in
the input list are present in the output, along with the new item being included.

include :: α→ [α]→ [α]
include = (λ x xs • (u ys | items ys = [[x ]] ] items xs ))

(7)

If we are calculating permutations, it seems that an efficient refinement of
include might be one that doesn’t do any permuting of the partial results! That
is, we can replace include by a specification that maintains the order of items
in the input list, but can put the new item in any position. We call this relation
inject .

inject :: α→ [α]→ [α]

inject =
(

λ x xs •
(
u ys

∣∣∣∣ (
∃ xs1, xs2 •

xs = xs1 ++ xs2
ys = xs1 ++ [x ] ++ xs2

))) (8)

We claim that

include v inject (9)

and need to prove that the postcondition has been strengthened, but leave this
as an exercise.

The simplest and most efficient refinement of inject is (:) (cons), which always
chooses x1 to be empty, thus adding the new value at the beginning of the input
list. This results in a very boring permutation, since:

foldr (:) [] = id (10)

That is, implementing perm by refining include to (:) simply produces the iden-
tity function. All that we have found is that a list is a permutation of itself.
Although we have taken the refinement of perm past the point where it can be
part of an implementation of sort , we have some useful intermediate results.
Also, even though the final step is not terribly interesting, it is a good sanity
check.
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3.2 Ascending Output

The relation ascendingOutput ignores its input, but always outputs a list that is
in ascending order.

ascendingOutput :: (Ord α)⇒ β → [α]
ascendingOutput = (λ z • (u ys | isAscending ys ))

(11)

For completeness we define isAscending and provide an implementation.

isAscending :: (Ord α)⇒ [α]→ B
isAscending = (λ xs • (∀ i , j | 0 ≤ i < length xs − 1 • xs!!i ≤ xs!!(i + 1)))
isAscending v (λ xs • all (zipWith (≤) xs (tail xs)))

(12)

3.3 A Refinement Rule For foldr

The specification of sort (4) suggests that we wish to strengthen an implementa-
tion of perm so that its output satisfies isAscending . This leads us to investigate
how we can refine a given specification by a foldr operation. Our investigations
lead us very quickly to an instantiation of the structural induction proof rule for
lists.

P(i), (∀ x , xs • P(xs)⇒ P(f x xs))
(∀ ys • P(foldr f i ys))

(13)

We can rewrite this as a refinement rule by instantiating the variables in the
consequence with specifications that satisfy the conditions in the assumption.

(λ xs • (u ys |P(ys) )) v foldr (λ x xs • P(xs) >− u ys |P(ys) )
(u i |P(i) )

(14)

That is, we begin with a specification of a function, mapping a list to a list,
where the result satisfies P . We can refine this by a foldr operation, as long as
the initial value satisfies P , and the accumulation function maintains P .

3.4 An Ascending Permutation

We can now implement ascendingOutput (11) via (14).

ascendingOutput v foldr (λ x xs • isAscending xs >− u ys |isAscending ys )
(u i | isAscending i )

(15)
It is easy to prove that the initial value is refined by the empty list.

(u i | isAscending i ) v [] (16)
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We have now refined both conjuncts of (4). We choose inject as a suitable
refinement of perm.

sort v foldr
(

λ x xs •
(
u ys

∣∣∣∣ (
∃ xs1, xs2 •

xs = xs1 ++ xs2
ys = xs1 ++ [x ] ++ xs2

)))
[]

∩
foldr (λ x xs • isAscending xs >− u ys |isAscending ys ) []

(17)
We can use (3) to produce a refinement involving a single use of foldr

sort v foldr insert [] (18)

and define insert as the conjunction of the two accumulation relations, as follows.

insert = λ x xs • isAscending xs >−u ys

∣∣∣∣∣∣
isAscending ys(

∃ xs1, xs2 •
xs = xs1 ++ xs2

ys = xs1 ++ [x ] ++ xs2

)
(19)

A reasonable implementation of insert is

insert v
(

λ x xs •
(
u ys

∣∣∣∣ (
∃ xs1, xs2 •

(xs1, xs2) = break (> x ) xs
ys = xs1 ++ [x ] ++ xs2

)))
(20)

where break splits its input list before the first element that satisfies the given
condition.

4 A Plural Insertion Sort

We use a plural version of insertion sort to motivate further discussion. By plural
we mean that the set of all possible results is returned, which doesn’t make much
of a difference for sorted lists, since all results will be the same. However, there
are many problems where it is useful to consider a set of possible solutions
rather than a single solution. For example, we might be interested in calculating
all possible permutations of a list instead of a just a single permutation.

Fortunately, we have at our disposal Λ, the power transpose operator (Bird
and de Moor [3]), which takes a relation and turns it into a set-valued function.
For the example of permutations we can simply write

perms = Λ perm (21)

to describe the function that returns the set of all permutation of a given list.
Even more fortunately, we have a simple rule for calculating the power trans-

pose of a relation that is expressed in terms of foldr .

Λ (foldr f i) = foldr
(
λ x • ∪ ◦mapSet (Λ (f x ))

)
{i} (22)
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This is an instance of a more general rule for relational catamorphisms given by
Bird and de Moor [3].

If we consider that

(Λ (insert x )) xs = {insert x xs} = (singleton ◦ insert x ) xs (23)

then Λ sort can be written as follows.

Λ sort v foldr
(
λ x • ∪ ◦mapSet (singleton ◦ insert x )

)
{[]} (24)

We have shown that we can phrase an initial specification in the singular and
still construct a plural implementation.

5 Filtering Permutations

We can generalise from the specification of sort given in (4) to a more generic
shape of specification. Consider specifying a function f via the conjunction of a
function g that produces a list, and an extra requirement on the output list P .
We can write this as

f = g ∩ (λ x • (u ys |P(ys) )) (25)

We can implement Λ f as follows.

Λ f v filterSet P ◦ Λ g (26)

That is, we can calculate all of the possible outputs of g , and then discard those
outputs that don’t satisfy P . Groves [6] has proved some similar, more general
results to do with implementing conjunctions using sequential composition in
the imperative refinement calculus.

We could have used this as a very naive, though very simple, approach for
implementing sort .

Λ sort v filterSet isAscending ◦ perms (27)

The best case complexity is quite good when combined with laziness!
Focusing on the body of the accumulation relation in (24) we can observe

the following property.

Λ insert x v filterSet isAscending ◦ Λ inject x (28)

By generalising isAscending to an arbitrary predicate P , we get

P([])
perms ∩ (λ xs • (u ys |P(ys) ))

v
foldr

(
λ x • ∪ ◦mapSet (filterSet P ◦ Λ inject x )

)
{[]}

(29)

This is quite a useful general result, and is much more efficient than calculating
all permutations and then filtering them.
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6 Eight Queens

The eight queens problem is well known to most computer scientists. The goal is
to place eight queens on a chess board so that no queen can attack another. Since
a queen can move either horizontally or vertically, like a rook, or diagonally, like
a bishop, we can use conjunction to specify the problem.

eightQueens = eightRooks ∩ eightBishops (30)

The eight rooks problem is easy to specify.

eightRooks = zip (perm [′a ′..′h ′]) (perm [1..8]) (31)

We take the eight distinct files and permute them, do the same for the ranks,
and then construct pairs.

Since perm v id we can decide not to permute the files.

eightRooks v zip [′a ′..′h ′] (perm [1..8]) (32)

If we ignore the order of the pairs in the resulting list, this still leaves use with
full coverage of the solution space. Refining out the perm of the ranks would
leave us with a trivial solution where the rooks are arranged along the diagonal
from (′a ′, 1) to (′h ′, 8).

The eight bishops problem doesn’t appear to have as simple a solution as the
eight rooks problem. A solution can be specified using a list of pairs of ranks and
files, of length eight, where no two pairs occupy a common diagonal. We won’t
formalise this here, because we aren’t confident that there is a useful solution
involving such a formalisation. Another problem is that we haven’t expressed
the eight rooks problem in a form where foldr appears at the outermost level.

In conclusion, even though it is quite easy to express the eight queens problem
using conjunction, there isn’t necessarily a refinement sequence that maintains
the conjunction for any length of time. However, it is still possible that there is
such a solution.

7 Boggle

7.1 Introduction

Boggle is Parker Brothers trademark for its hidden word game. The object of
the game is to find words in a four-by-four grid. The positions in the grid are
occupied by dice that have a letter of the alphabet on each of their six faces.
Before each round the dice are shaken into the grid in a random arrangement.
Words are formed by moving vertically, horizontally or diagonally between the
topmost faces of the dice. Each die may only be used once in each word. The
problem that we are interested in is finding all possible words in a particular
grid, relative to some dictionary.
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7.2 Grids and Paths

Before considering the letters associated with the dice, it is useful to consider
the paths that can be constructed between them. We begin by constructing a
four-by-four grid.

grid = [(x , y) | x ← [1..4], y ← [1..4]] (33)

A very naive way of specifying a solution is to consider all possible permu-
tations of the grid elements, and restrict ourselves to those that are properly
connected. We can then calculate all possible subsequences of each of these com-
plete paths. In addition, we choose to work in a singular setting, specifying a
single path.

path = (subsequence ◦ (perm ∩ outputConnected)) grid (34)

We consider the specification of subsequence to be uninteresting, so we turn our
attention to specifying connected paths through the grid. We could do this via
a simple Boolean test but, for reasons that will become obvious, we choose to
do this by calculating the length of a path by considering the distance between
each pair of path elements.

pathLength p = Σ i | 0 ≤ i < length p − 1 •
max abs ((fst (p!!i)− fst (p!!(i + 1))))

abs ((snd (p!!i)− snd (p!!(i + 1))))

(35)

Now we can specify a connected path as one whose pathLength is less than the
number of elements in the path.

isConnected p = pathLength p < length p (36)
outputConnected = (λ xs • (u ys | isConnected ys )) (37)

In fact, the pathLength will be exactly one less that the length, but the above,
more general definition turns out to be more useful. Also, note that isConnected
handles any list of pairs of numbers, and isn’t restricted to work with grid .

If we choose to implement outputConnected using foldr , via (14), we en-
counter a fairly serious problem. Although we require the final result to be
connected, we don’t necessarily want each intermediate result of foldr to be con-
nected. That is, an intermediate result may not be connected, but may become
connected if new elements are ‘injected’ into useful places. This is akin to choos-
ing a loop invariant that is too strong, so possibly useful intermediate results
are likely to be rejected.

We can provide a weaker version of isConnected that does the same job.

maxLength = 16 (38)
isPossiblyConnected p = pathLength p < maxLength (39)

This condition only causes a partial path to be rejected if its length already
exceeds the maximum allowable length. For complete paths (of length 16),
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this is equivalent to isConnected . However, this condition rejects fewer of the
shorter, intermediate results, making it less efficient (although more correct)
than isConnected .

7.3 Incomplete Paths

There is a neater specification of paths that dispenses with the idea of calculating
complete paths and then calculating subpaths. The subpaths can be directly
specified via the following variation of perm (5).

path ′ = foldr maybeInclude [] (40)

maybeInclude =

λ x xs •

u ys

∣∣∣∣∣∣
items ys = [[x ]] ] items xs

∨
items ys = items xs

 (41)

That is, maybeInclude is like include (7), but doesn’t necessarily include the
new element. Refinements of maybeInclude follow a similar pattern to those in
Sect. 3.1.

However, if this model is used, it is more difficult to specify the ‘invariant’.
We hope to give this more consideration in the future.

7.4 Mindboggling Conclusions?

We haven’t yet done enough work on this example to decide whether we can
take a neat specification of the problem involving conjunction, and perform a
neat refinement that yields a neat result! However, the work that we’ve done so
far does raise some interesting points.

8 Conclusions

There are examples where conjunction can be exploited to modularise the design
of programs. This is particularly true when higher-order functions are used to
build identical frameworks for the conjuncts, allowing a promotion-like mecha-
nism to be used. The approach is unlikely to be suitable for implementing all
programs that can be specified using conjunction and catamorphisms, but when
it can be used it is quite elegant. In particular, our method of implementing an
arbitrary restriction using foldr can introduce concerns about monotonicity; the
problem is similar to choosing a loop invariant that is too strong. The approach
is not universal, but it does show some promise.

Another conclusion that can be drawn from this work is that problems can
often be solved in elegant ways by combining elegant techniques from a variety
of elegant methodologies.
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